If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+15x-225=0
a = 1; b = 15; c = -225;
Δ = b2-4ac
Δ = 152-4·1·(-225)
Δ = 1125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1125}=\sqrt{225*5}=\sqrt{225}*\sqrt{5}=15\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15\sqrt{5}}{2*1}=\frac{-15-15\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15\sqrt{5}}{2*1}=\frac{-15+15\sqrt{5}}{2} $
| 13x=184 | | (x^2-13)^2=144 | | 7x+8=62-2x | | 10=39x | | x/7+5=29/7 | | b/5-7=-3 | | (3x-2)(-2x+16)=0 | | k/6+7=4 | | 2x+1/2=17/2 | | -w/4-10=-4 | | -d/5+3=12 | | z/4-11=-3 | | 10x+9-11-x=-4x-8-6x+6 | | f/7-8=-3 | | y^{′2}-2y=0 | | 2x/5=28 | | v/8-6=-9 | | 2t+3÷7=4 | | y^{′2}+2y=0 | | y/3+7=2 | | 1/16y^2-5y+1024=0 | | 2x-5/7=3/4/ | | 5t2-10t-60=0 | | n/90=1/4 | | 1/4=90/n | | 90/n=1/4 | | u/10+4=11 | | n/5-9=3 | | k/2-4=4 | | w/8+11=17 | | b-25=13 | | d/6+7=12 |